

Refractory and Relapsed PCNSL

Carole Soussain, MD, PhD Hematology, Institut Curie, France

Rome, September 7-9 2022

VOI Donna Camilla Savelli Hotel

President: P.L. Zinzani

Disclosures

Company name	Pre-clinical Research support
Astra-Zeneca	Х
GossamerBio	Х
Hangzhou Hezheng Pharmaceutical	Х

INTRODUCTION

Rome, September 7-9 2022

Incidence of R/R PCNSL: Informations from the LOC database « RWE »

Jan 2011-March 2016: N = 1002 newly-diagnosed PCNSL from 32 centers

Median age= 68 y (18 – 91); DLBCL : 97 %

MTX HD in first-line= 92 % + Rituximab in 50-87 %

Median follow-up = 44 months

50% refractory to first-line treatment or relapse after first-line treatment

Houillier et al, Neurology 2020

Specificities in PCNSL

- Site of relapse (LOC Database)
 - Brain : 92 % (often in spatially distinct site of the brain)
 - IO : 10 %
 - Systemic: 3 %
- Late relapse > 60 months
- Asymptomatic relapsed in 20-25% of cases (brain and IO relapse)

Ambady et al, J Clin Oncol 34, 2016 (suppl; abstr e19051); Ghesquieres et al, Annals Oncol 2010; Houillier et al. Neurology 2020; Fossard et al, ASH 2013; Langnier-Lemercier et al, Neuro-Oncol 2016

Non-enhanced pattern of relapse

Biomarkers as Prognostic factors ?

Rome, September 7-9 2022

In the CSF

6th POSTGRADUATE

IL10 at the end of the treatment in CR patients

N'Guyen et al. Eur J Cancer 2016

in the CSF and/or the plasma

Ct DNA

Mutter et al. Blood (2021) 138 (Supplement 1): 6

PFS according to IL10/CSF at the end of treatment

PFS according to ctDNA/CSF+/-plasma during treatment

OS according to treatment at relapse LOC Database (N = 460 R/R PCNSL)

6th POSTGRADUATE

Whole population:

- 3-y OS = 25 %
- Median = 6.7 months After ASCT:
- 3-y OS = 57%
- Median OS = NR

TREATMENT OPTIONS AT RELAPSE

Entering a « no standard » area

CONVENTIONAL TREATMENTS

Rome, September 7-9 2022

WBRTORR: 74 %; Median OS = 11 months				
Re-HD MTX	In selected cases with long lasting CR1 with previous course of MTX			
HD Ara-C or Ifosfamide based ORR: 60-80 %, Chemo (e.g R-DHAP, R-ICE)				
but short duration of response				

if no further consolidation ASCT

Morris, Lancet Neurol 2009; Plotkin, Lancet 2001; Plotkin, Clin Cancer Res 2004; Nguyen, JCO 2005; Soussain, JCO 2008; Sierra del Rio J Neuro-Oncol 2011; Mappa, Hematol Oncol 2012; Choquet, Hematol Oncol 2013, abst 44; Langnier-Lemercier, J Neuro-Oncol 2016

IC + ASCT in relapse for R/R PCNSL

Rome, September 7-9 2022

6th POSTGRADUATE

Multicentric prospective study N = 43 TT-Bu-Cy

Feasibility and efficacy of ASCT in consolidation after salvage treatment.

2-y PFS = 58 % in patients who received ASCT

French retrospective study N = 79 **TT-Bu-Cy** Med FU = 56 months Median age= 52.4 y (23-67) 5-y EFS = 44 % chimioS TRM: n = 6 (8%)

German prospective study N = 32 **R-TT-BCNU** Med FU = 45 months Median age = 57 y (37-65) 2-year PFS = 46% TRM: n = 4 (12 %)

Soussain et al, J Clin Oncol 2008; Soussain, et al. Haematologica 2012; Kasenda et al, Leukemia 2017

Rome, September 7-9 2022

Type of ASCT: Retrospective study on the IBMTR 2010-2018

<u>3 types of IC used in PCNSL</u>:

TBC: Thiotepa-Busulfan-Cyclophosphamide (n = 263)

```
TT-BNCU: Thiotepa – BCNU (n = 273)
```

BEAM (n = 63)

Rome, September 7-9 2022

Type of ASCT: Retrospective study on the IBMTR 2010-2018

6th POSTGRADUATE

C Progression-free survival

D Overall survival

N= **603**; mean age = 57 (range, 19-77) years

Relapse: BEAM > TT-BCNU > TBC NRM: BEAM - TT-BCNU < TBC

Scordo et al. JAMA Oncol 2021

Rome, September 7-9 2022

Type of ASCT: RWE - LOC database N = 266 (2011-Nov 2019)

N = 266 Median age at IC-ASCT: 57 y (22-74) Median FU = 43 months

	TT-Bu N=24	TBC N= 142	TT-BCNU N=64	BEAM N=36
RR at 2 years	9%	14%	34%	44%
RR at 5 years	9%	19%	34%	48%

Schenone et al. BMT 2022

First-line : N = 147 First-relapse : N = 88 > 1 relapse : N = 31

5-y OS: 80%; 50%, 43%

	OS			PF	S			
	MUL	IVARIAT	IVARIATE ANALYSIS		MULTIVARIATE ANALYSIS		'SIS	
	P-value	HR	95% HR Confidence Limits		P-value	HR	95% Confi Lin	6 HR dence nits
Line of treatment at IC- ASCT								
1st line	-	1			-	1		
1st relapse	<0.0001	3.4	1.9	6.2	<0.0001	3.2	1.7	5.6
Beyond 1st relapse	<0.0001	6.9	3.4	14.0	<0.0001	6.7	3.7	12.4
Type of IC-ASCT	0.3							
TBC+TT-Bu					-	1		
TT-BCNU					0.05	1.2	0.7	1.9
BEAM					0.01	2.6	1.3	5.2

Schenone et al. BMT 2022

ASCT up to what age?

Rome, September 7-9 2022

ASCT in elderly (< 70) at relapse

European study(TT-based)

OS in patients with HCT-ASCT at 2nd or later line

• N = 36

- Median age= 67 (66-70)
- 2-y PFS = 54 %
- 2y-OS = 66 %

TARGETED THERAPIES

	Drug	Study	N	Results	Ref
iMiDs	Lena 25 mg + Ritux	Phase II	50	Best ORR = 67 % (18 CR: 40%) ORR end of induction = 36 % Median PFS = 7 months	Ghesquières Annals of Oncol2019
	Poma 3, 5, 7, 10 mg + Dex	Phase IB/II	25	ORR = 48 % (5 CR + uCR) Median PFS = 5 months	Tun Blood 2018

Responses in the brain, the eyes and the CSF

TARGETED THERAPIES

	Drug	Study	N	Results	Ref
iMiDs	Lena 25 mg + Ritux	Phase II	50	Best ORR = 67 % (18 CR: 40%) ORR end of induction = 36 % Median PFS = 7 months	Ghesquières Annals of Oncol2019
	Poma 3, 5, 7, 10 mg + Dex	Phase IB/II	25	ORR = 48 % (5 CR + uCR) Median PFS = 5 months	Tun Blood 2018
	Ibrutinib 560 mg/840 mg	Phase I Phase II	PCNSL (n = 13) PCNSL + sCNSL (n = 44)	Detectable CSF level ORR = 70 % Median PFS = 4.6 months	Grommes Cancer Discovery 2017;
IBTK	Ibrutinib 560 mg	Phase II	52 (38 brain +)	Detectable CSF level ORR = 52 % (10 CR) @ 2 months Median PFS = 4.8 months	Soussain Eur J Cancer 2019
	Tirabrutinib	Phase I/II	44	ORR: 64%; CR = 34% Median PFS = 2.9 months	Narita NeuroOncol 2021

Responses in the brain, the eyes and the CSF

Response >12 months in 15 patients, (including 6 brain+)

Before 2months 18 months

Ritux-Lenalidomide-Ibrutinib

CLINICAL/SCIENTIFIC NOTE

Rome, September 7-9 2022

Yang et al, Cancer cell 2012

Rituximab-Lenalidomide-Ibrutinib Combination for Relapsed/Refractory Primary CNS Lymphoma

A Case Series of the LOC Network

Caroline Houillier, MD, Cecile Moluçon Chabrot, MD, Marie-Pierre Moles-Moreau, MD, Lise Willems, MD, Guido Ahle, MD, Agathe Waultier-Rascalou, MD, Luc-Matthieu Fornecker, MD, PhD, Khê Hoang-Xuan, MD, PhD, and Carole Soussain, MD, PhD

N = 14 R/R PCNSL (11 pts refractory to last treatment) Response in 8 patients: 4 CR and 4 PR Median time to response = 2.5 months

- Consolidation in 3: 2 WBRT ; 1 ASCT
- Bridge to CART-cell in one patient

1-y OS = 53%

On going US study NCT03703167

IMMUNOTHERAPIES

Rome, September 7-9 2022

	DLBCL		EBV ⁻ PCNSL
		1001	
PD-1 Ligand Deregulation			
9p24.1/PD-L1 ^{gain} and/or PD-L2 ^{gain}	6% (11/180) ^a	7% (4/55) ^a	52% (33/63) ^p
PD-L1 or PDL-2 translocation	NA	NA	6% (4/66) ^q

Chapuy et al, Nat Med 2018

First results of the AcSé Pembrolizumab Phase II in the Primary CNS Lymphoma (PCNSL) cohort

Khe Hoang-Xuan, Roch Houot, Carole Soussain,, Marie Blonski, Anna Schmitt, Vincent Delwail, Gandhi Laurent Damaj, Herve Ghesquieres, Frédéric Peyrade, Adrian Tempescul, Julie Abraham, Philippe Agape, Guido Ahle, Nathalie Baize, Pierre Bories, Chantal Campello, Emmanuel Gyan, Fabrice Jardin, Philippe Rey, Sylvain Choquet, Caroline Houillier, Nathalie Cassoux, Valerie Touitou, Nadine Martin-Duverneuil, Frederic Legrand, Assia Lamrani-Ghaouti, Ophelie Querel, Natalie Hoog Labouret, Clotilde Simon, Sylvie Chevret, and Christophe Massard. Blood (2020) 136 (Supplement 1) : 15

Anti-PD1

Rome, September 7-9 2022

From July 2017 to October 2019: Patient Characteristics: Age Previous line of treatment N = 50 patients from 17 centers, including 9 PVRL

Median: 72 years (range 43 – 83) Median : 3 (1 - 9)

- Median number of cycles = 4 (range 1-35)

<u>Best ORR</u>	13	(26%)
CR	8	(16%)
PR	5	(10%)
SD	5	(10%)
PD	29	(58%)
NE	3	(6%)

In responders: Median duration of response = 10 months

CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma

Encouraging preliminary results:

- Faisability of CART-cells in PCNSL
- Neurotoxicity not increased
- Signal of efficacy

Letter to Blood

TO THE EDITOR:

December 2021

CAR T-cell therapy in primary central nervous system lymphoma: the clinical experience of the French LOC network

Marion Alcantara,^{1,2} Caroline Houillier,³ Marie Blonski,⁴ Marie-Thérèse Rubio,^{5,6} Lise Willems,⁷ Agathe Waultier Rascalou,⁸ Magali Le Garff-Tavernier,⁹ Karim Maloum,⁹ Clotilde Bravetti,⁹ Laetitia Souchet,¹⁰ Damien Roos-Weil,¹⁰ Véronique Morel,¹⁰ Madalina Uzunov,¹⁰ Carole Metz,¹¹ Meriem Dhib-Charfi,¹¹ Stéphanie Nguyen,¹⁰ Natalia Shor,¹² Dimitri Psimaras,³ Nicolas Weiss,¹³ Nathalie Jacque,¹⁰ Silvia Solorzano,¹⁰ Nicolas Gauthier,¹⁰ Marie Le Cann,¹⁰ Françoise Norol,¹⁰ Carole Soussain,^{1,2} and Sylvain Choquet¹⁰

	LCP N = 9
Age, median (min – max)	67 (48 – 75)
male	3 (33%)
ECOG médian (min – max)	1 (0 - 4)
N (median) previous line (min – max)	3 (2 – 5)
Previous MTX HD	9 (100%)
Previous ASCT	7 (78%)
Previous WBRT	1 (eye)
Bridge therapy	<mark>8 (89%)</mark>
PD at time of CART-cells infusion	4 (44%)
T-cell depletion : FC	9 (100%)
Tisa-cel Axi-cel	7 (78%) 2 (22%)

December 2021

TO THE EDITOR:

CAR T-cell therapy in primary central nervous system lymphoma: the clinical experience of the French LOC network

Marion Alcantara,^{1,2} Caroline Houillier,³ Marie Blonski,⁴ Marie-Thérèse Rubio,^{5,6} Lise Willems,⁷ Agathe Waultier Rascalou,⁸ Magali Le Garff-Tavernier,⁹ Karim Maloum,⁹ Clotilde Bravetti,⁹ Laetitia Souchet,¹⁰ Damien Roos-Weil,¹⁰ Véronique Morel,¹⁰ Madalina Uzunov,¹⁰ Carole Metz,¹¹ Meriem Dhib-Charfi,¹¹ Stéphanie Nguyen,¹⁰ Natalia Shor,¹² Dimitri Psimaras,³ Nicolas Weiss,¹³ Nathalie Jacque,¹⁰ Silvia Solorzano,¹⁰ Nicolas Gauthier,¹⁰ Marie Le Cann,¹⁰ Françoise Norol,¹⁰ Carole Soussain,^{1,2} and Sylvain Choquet¹⁰

- Median FU: 15 months
- IPCG criteria
- Centralized review

	LCP; N = 9
Response at M1	
ORR	6 (67%)
CR	3 (33%)
PD	2 (22%)
Response at M3	
ORR	6 (67%)
CR	5 (56%)
PD	2 (22%)
Best response	
CR	5 (56%)
PR	1 (11%)

- 12 months-OS : 67%: median OS : 17 months
- 12 months-PFS : 22%
- Median PFS in Responder : 9 months
 - Median DoR : 10 months

Regular Article

CLINICAL TRIALS AND OBSERVATIONS

Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase 1/2 clinical trial

Matthew J. Frigault,^{1,2,*} Jorg Dietrich,^{3,*} Kathleen Gallagher,² Mark Roschewski,⁴ Justin T. Jordan,³ Deborah Forst,³ Scott R. Plotkin,³ Daniella Cook,^{1,2} Keagan S. Casey,^{1,2} Kevin A. Lindell,^{1,2} Gabriel D. Depinho,^{1,2} Katelin Katsis,² Eva Lynn Elder,² Mark B. Leick,^{1,2} Bryan Choi,^{2,5} Nora Horick,² Frederic Preffer,⁶ Meredith Saylor,¹ Steven McAfee,¹ Paul V. O'Donnell,¹ Thomas R. Spitzer,¹ Bimalangshu Dey,¹ Zachariah DeFilipp,¹ Areej El-Jawahri,¹ Tracy T. Batchelor,⁷ Marcela V. Maus,^{1,2,*} and Yi-Bin Chen^{1,*}

N = 12 ORR: 7 (58%) CR : 6 (50 %)

Characteristics	Patients (n = 12)
Median age (range), y	63 (34-81)
Male:female	7:5
Infused/enrolled	12/13
ECOG performance status,	
0-1	7/12
2+	5/12
Disease location	
Parenchymal	11/12
Leptomeningeal enhancement/CSF+	2/12
Cell of origin	
Germinal center B-cell type	1/12
Nongerminal center B-cell type	11/12
Median no. of previous lines of antineoplastic therapy (range)	4 (2-9)
Prior methotrexate-based regimen	
Yes	12/12
No	0/12
Prior thiotepa-based ASCT	
Yes	3/12
No	9/12
BTKi refractory	
Yes	12/12
No	0/12
IMiD refractory*	
Yes	4/12
No	8/12
TEDDI-R refractory	
Yes	6/12
No	6/12
Prior radiotherapy	
Yes	4/12
No	8/12
Bridging therapy (including high-dose steroids)	
Yes	12/12
No	0/12

CSF Day +7

CD3+

CAR+

CLINICAL CASES

DF (date of birth: 01/11/1959)

MY (31/01/1955)

Rome, September 7-9 2022

Feb 2017: DLBCL-PCNSL

4 RMPV + 1 R-AraC

July 2017 -Jan 2018 : 7 maintenance R-MT

June 2017: CR

30

MY (31/01/1955)

Rome, September 7-9 2022

CONCLUSION - PERSPECTIVES

Rome, September 7-9 2022

- ✓ R/R : challenging issues
 - > Decrease the incidence of R/R PCSNL by improving 1^{rst} line treatment
 - > Robust biomarkers are needed to assess MRD

R/R : challenging issues

6th POSTGRADUATE

- > Decrease the incidence of R/R PCSNL by improving 1^{rst} line treatment
- Robust biomarkers are needed to assess MRD
- Multiple therapeutics options: according to patient's characteristics
- Consider IC + ASCT in first relapse whenever possible to patients up to 70 y with adjusted type of IC

R/R : challenging issues

6th POSTGRADUATE

- > Decrease the incidence of R/R PCSNL by improving 1^{rst} line treatment
- Robust biomarkers are needed to assess MRD
- Multiple therapeutics options: according to patient's characteristics
- Consider IC + ASCT in first relapse whenever possible to patients up to 70 y with adjusted type of IC
- Activities of iMIds and iBTK and R2-ibru: for ASCT not eligible patients or bridge therapy?
- Encouraging results of CART-cells
- Some activity of antiPD1

R/R : challenging issues

6th POSTGRADUATE

- > Decrease the incidence of R/R PCSNL by improving 1^{rst} line treatment
- Robust biomarkers are needed to assess MRD
- Several therapeutics options: according to patient's characteristics
- Consider IC + ASCT in first relapse whenever possible to patients up to 70 y with adjusted type of IC
- Activities of iMIds and iBTK and R2-ibru: for ASCT not eligible patients or bridge therapy?
- Encouraging results of CART-cells
- Some activity of antiPD1
 - > Improve the efficacy of immunotherapies:
 - CART-cells earlier in the course of the disease, in combination with drugs able to modulate the immune brain microenvironment
 - anti-PD1 in combination, in maintenance?